Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Natural Product Sciences ; : 245-250, 2021.
Article in English | WPRIM | ID: wpr-918581

ABSTRACT

The methylglyoxal (MGO) trapping constituents from Malus baccata L. were investigated using incubation of MGO and crude extract under physiological conditions followed by HPLC analysis. The peak areas of MGO trapping compounds decreased, and their chemical structures were identified by HPLC-ESI/MS. Sieboldin was identified as a major active molecule representing MGO-trapping activity of the crude extract. After reaction of sieboldin and MGO, remaining MGO was calculated by microplate assay method using imine (Schiff base) formation of 2,4-dinitrophenylhydrazine (DNPH) and aldehyde group. After 4 h incubation, sieboldin trapped over 43.8% MGO at a concentration of 0.33 mM and showed MGO scavenging activity with an RC 50 value of 0.88 mM for the incubation of 30 min under physiological conditions. It was also confirmed that sieboldin inhibited the production of advanced glycation end products (AGE) produced by bovine serum albumins (BSA)/MGO. Additionally, MGO trapping mechanism of sieboldin was more specifically identified by 1 H-, 13 C-, 2D NMR and, confirm to be attached to the position of C-3' (or 5').

SELECTION OF CITATIONS
SEARCH DETAIL